Efficient Conversion of Maltose into Sorbitol over Magnetic Catalyst in Extremely Low Acid

نویسندگان

  • Jun Zhang
  • Jibiao Li
  • Shubin Wu
  • Ying Liu
چکیده

Ni/Cu/Al/Fe hydrotalcite precursor was synthesized by a co-precipitation method. The activity of the reduced precursor for one-step conversion of maltose into sorbitol in the presence of H2 and extremely low phosphoric acid was investigated. XRD and XPS tests provided the essential properties of the precursor and prepared magnetic catalyst. Effects of various processing parameters towards the reaction performance were studied in detail. A desired sorbitol yield of 93.1% was attained at 458 K for 3 h with a catalyst dosage of 20%. A catalyst recycling experiment demonstrated that Ni4.63Cu1Al1.82Fe0.79 was a better catalyst and could be reused three or four times. The specific reasons for catalyst deactivation were considered in depth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles as a reusable efficient nanocatalyst for synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes

Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles (ADSA-MNPs) were used as effective, low-cost and reusable solid heterogeneous nanomagnetic catalysts for conversion of aldehydes and ketones to corresponding gem-dihydroperoxides and 1,2,4,5-tetraoxanes using aqueous hydrogen peroxide (30% w/w in H2O) at room temperature. These compounds are important ...

متن کامل

Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles as a reusable efficient nanocatalyst for synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes

Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles (ADSA-MNPs) were used as effective, low-cost and reusable solid heterogeneous nanomagnetic catalysts for conversion of aldehydes and ketones to corresponding gem-dihydroperoxides and 1,2,4,5-tetraoxanes using aqueous hydrogen peroxide (30% w/w in H2O) at room temperature. These compounds are important ...

متن کامل

Facile and Efficient Conversion of Furfuryl Alcohol into n-Butyl Levulinate Catalyzed by Extremely Low Acid Concentration

Alkyl levulinates have been identified as promising chemicals with various industrial applications. Here, a catalytic process for the synthesis in an n-butanol medium of n-butyl levulinate via the alcoholysis of biomass-derived furfuryl alcohol was performed using an extremely low concentration of sulfuric acid (≤ 0.01 M) as the catalyst. A study was conducted that was designed to optimize the ...

متن کامل

Poly(N- bromosuccinimide) (PNBS) as a mild, efficient, non-acidic, polymeric and heterogeneous catalyst applied for easy conversion of epoxides into thiiranes by treatment with KSCN or (NH2)2CS at room temperature

Poly (N-bromosuccinimide) (PNBS) as a mild, efficient, non-acidic, polymeric and heterogeneous catalyst was applied for simple conversion of epoxides into thiiranes by treatment with KSCN or (NH2)2CS at room temperature. Aliphatic and aromatic epoxides converted into their corresponding thiiranes under mild conditions. All reactions proceeded in short reaction times and afforded the correspondi...

متن کامل

Tungstophosphoric acid embedded magnetic chitosan as a green catalyst for the synthesis of N-cyclohexyl-3-aryl quinoxaline-2-amines

In the present study, a novel catalyst was well designed by incorporating the tungstophosphoric acid into the magnetic chitosan, as highly stable composite, in which the iron oxides were used the strong super-magnetic core. The prepared composite was characterized by several methods, including FTIR, XRD, SEM, TEM and EDS and its catalytic activity was examined in a facile, green and highly effi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013